博客
关于我
动态规划(最高阶)
阅读量:54 次
发布时间:2019-02-26

本文共 2500 字,大约阅读时间需要 8 分钟。

序列类动态规划问题解析

动态规划思路总结

在处理序列类动态规划问题时,核心思路是通过定义状态并建立状态转移方程,将问题逐步拆解。这种方法的关键在于如何找到当前状态与之前所有状态的联系,尤其是在处理子序列问题时,需要考虑元素的顺序和位置关系。

以下是几个经典问题的分析示例:


问题1:最长上升子序列

问题描述

给定一个无序整数数组,找到其中最长上升子序列的长度。

示例

输入: [10,9,2,5,3,7,101,18]输出: 4解释: 最长的上升子序列是 [2,3,7,101],长度为4。

问题解析

  • 问题拆解

    最长上升子序列问题的关键在于确定每个位置是否可以与前面某个位置形成递增的子序列。我们可以定义 dp[i] 为以 nums[i] 结尾的子序列的最大长度。

  • 状态定义

    dp[i] 表示以 nums[i] 结尾的最长上升子序列的长度。通过分析,可以发现 dp[i] 的值取决于前面所有 nums[j] < nums[i]dp[j] 的最大值加1。

  • 递推方程

    对于每个位置 i,我们需要检查前面所有位置 j,并找到满足 nums[j] < nums[i] 的最大 dp[j]

    dp[i] = max(dp[j] for j in 0..i-1 if nums[j] < nums[i]) + 1
  • 实现

    直接暴力枚举所有可能的子序列会导致时间复杂度为 O(n^2),虽然不够高效,但可以帮助理解问题结构。优化方案将在后续内容中详细介绍。

  • 代码实现

    public int lengthOfLIS(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int[] dp = new int[nums.length];    Arrays.fill(dp, 1);    int max = 0;    for (int i = 0; i < nums.length; ++i) {        for (int j = 0; j < i; ++j) {            if (nums[i] > nums[j]) {                dp[i] = Math.max(dp[j] + 1, dp[i]);            }        }        max = Math.max(max, dp[i]);    }    return max;}

    问题2:打家劫舍

    问题描述

    你是一个专业的小偷,计划偷窃沿街的房屋。相邻房屋装有防盗系统,同一晚上不能进入相邻房屋。目标是偷窃到最高金额。

    问题解析

  • 问题拆解

    抢第 i 个房子可以选择抢或不抢。如果抢,则前一个房子不能抢;如果不抢,则前一个房子可以抢。

  • 状态定义

    定义 dp[i] 为抢到第 i 个房子的最大金额。抢到第 i 个房子时,只能抢第 i-2 个房子。

  • 递推方程

    dp[i] = max(dp[i-1], dp[i-2] + nums[i-1])

    其中 dp[0] 表示不抢第一个房子,dp[1] 表示抢第一个房子。

  • 代码实现

    public int rob(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int n = nums.length;    if (n == 1) {        return nums[0];    }    int[] dp = new int[n + 1];    dp[1] = nums[0];    for (int i = 2; i <= n; ++i) {        dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);    }    return dp[n];}

    问题3:打家劫舍plus

    问题描述

    房屋排列成一个圆圈,防盗系统同样有效。求偷窃到的最高金额。

    问题解析

  • 问题拆解

    房屋形成一个圆圈,意味着最后一个房子与第一个房子相邻。我们可以将问题分解为两种情况:

    • 不抢第一个房子,直接考虑房子 [1, n]
    • 不抢最后一个房子,直接考虑房子 [0, n-1]
  • 递推方程

    使用之前的 rob 函数计算两种情况的最大值。

  • 代码实现

    public int rob(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    if (nums.length == 1) {        return nums[0];    }    int n = nums.length;    return Math.max(        rob(Arrays.copyOfRange(nums, 0, n - 1)),        rob(Arrays.copyOfRange(nums, 1, n))    );}public int robI(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int n = nums.length;    int[] dp = new int[n + 1];    dp[1] = nums[0];    for (int i = 2; i <= n; ++i) {        dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);    }    return dp[n];}

    总结

    序列类动态规划问题的核心在于如何定义状态并建立状态转移关系。通过以上案例,我们可以看到动态规划在处理子序列问题中的广泛应用。优化算法的空间和时间复杂度将在后续内容中详细探讨。

    转载地址:http://ftfz.baihongyu.com/

    你可能感兴趣的文章
    Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
    查看>>
    nginx-vts + prometheus 监控nginx
    查看>>
    Nginx下配置codeigniter框架方法
    查看>>
    Nginx之二:nginx.conf简单配置(参数详解)
    查看>>
    Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
    查看>>
    Nginx代理初探
    查看>>
    nginx代理地图服务--离线部署地图服务(地图数据篇.4)
    查看>>
    Nginx代理外网映射
    查看>>
    Nginx代理模式下 log-format 获取客户端真实IP
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    Nginx反向代理与正向代理配置
    查看>>
    Nginx反向代理是什么意思?如何配置Nginx反向代理?
    查看>>
    nginx反向代理解决跨域问题,使本地调试更方便
    查看>>
    nginx启动脚本
    查看>>
    Nginx在Windows下载安装启动与配置前后端请求代理
    查看>>
    Nginx多域名,多证书,多服务配置,实用版
    查看>>
    nginx开机启动脚本
    查看>>
    nginx异常:the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx/conf
    查看>>
    nginx总结及使用Docker创建nginx教程
    查看>>